Student's Name:
Student's Name:

Lab day \& time: \qquad Date: \qquad

Circular Motion (M4) - Data Sheets

(Show all calculations and write all results on the data sheets in ink)
Activity 1: Radial Force vs. Angular Velocity
Be sure to fill-in the correct units in the space provided: ()
The radius r, i.e., the distance between the axis of rotation and the center of the brass disk value should remain constant: $r=0.100 \mathrm{~m}$. Verify this number! If the radius is not equal to $10.0 \mathrm{~cm}=0.100 \mathrm{~m}$, ask your TA for help.

You need to check that the lab equipment is setup for this distance between the moving mass and the axis of rotations. Make sure to zero the force sensor (push the "Tare" button).

The mass of the holding screw also does not change: $\quad m_{\text {screw }}=3.5 \mathrm{~g}$
If the force number changes to red and there is no data recording, then it is an indication that you forgot to zero the force sensor before starting data acquisition.
a. $\quad m_{0}=20 \mathrm{~g}, \Rightarrow m=m_{0}+m_{\text {screw }}=20.0 \mathrm{~g}+3.5 \mathrm{~g}=23.5 \mathrm{~g}=0.0235 \mathrm{~kg}$

The theoretical value $\quad m r=$

Fit parameter $\mathrm{A}=$ \qquad ()

Percent difference between the theoretical value and the result of force measurements:

$$
\frac{m r-A}{m r} \times 100 \%=
$$

\qquad (\%)
b. $\quad m_{0}=30 \mathrm{~g}, \Rightarrow m=m_{0}+m_{\text {screw }}=30.0 \mathrm{~g}+3.5 \mathrm{~g}=33.5 \mathrm{~g}=0.0335 \mathrm{~kg}$

The theoretical value $m r=$ \qquad ()

Fit parameter $\mathrm{A}=$ \qquad ()

Percent difference between the theoretical value and the result of force measurements:

$$
\frac{m r-A}{m r} \times 100 \%=
$$

\qquad (\%)
c. $\quad m_{0}=40 \mathrm{~g}, \Rightarrow m=m_{0}+m_{\text {screw }}=40.0 \mathrm{~g}+3.5 \mathrm{~g}=43.5 \mathrm{~g}=0.0435 \mathrm{~kg}$

The theoretical value $\quad m r=$ ()

Fit parameter $\mathrm{A}=$ \qquad ()

Percent difference between the theoretical value and the result of force measurements:

$$
\frac{m r-A}{m r} \times 100 \%=
$$

\qquad (\%)

Print the graph with data and quadratic fit and attached that to your lab report.

Activity 2: Radial Force vs. Mass

The radius r value should remain constant (do not change it): $\quad r=0.100 \mathrm{~m}$ Make sure to zero the force sensor (push the "Tare" button) each time you change mass.

Mass $m=$ $m_{0}+m_{\text {screw }}$ (kg)	Radial Force $F_{r}\left(\begin{array}{c}\text { for }\end{array}\right.$ $\omega=0 \mathrm{rad} / \mathrm{s}$	Radial Force $F_{r}\left(\begin{array}{c}\text { for }\end{array}\right.$ $\omega=30 \mathrm{rad} / \mathrm{s}$	Radial Force $F_{r}\left(\begin{array}{l}\text { for }\end{array}\right.$ $\omega=40 \mathrm{rad} / \mathrm{s}$	Radial Force $F_{r}\left(\begin{array}{l}\text { for }\end{array}\right)$ for $\omega=50 \mathrm{rad} / \mathrm{s}$
0.0435	"Zero" the force sensor			
0.0335	"Zero" the force sensor			
0.0235	"Zero" the force sensor			

When finished with data recording, prepare and print a single graph (or three separate graphs) showing the value of radial force F_{r} (on vertical axis) ${ }_{\mathrm{r}}$ as a function of mass m (on horizontal axis) for each of the velocity values: $\omega=30 \mathrm{rad} / \mathrm{s}, 40 \mathrm{rad} / \mathrm{s}$ and $50 \mathrm{rad} / \mathrm{s}$. You should have three lines with three data points on each line. Note the slope change in these three graphs.

Describe how the radial force is changing with increasing mass.
\qquad
\qquad
\qquad

The theoretical formula for the radial force F_{r} vs. mass m is given by Eq. (5):

$$
F_{r}=m \omega^{2} r=(m r) \omega^{2} \text { or } y=a x+b, \quad \text { where } a=\omega^{2} r \text { and } b=0
$$

The radial force should be proportional to the mass of the rotation object. For each value of angular velocity ω find the straight line fit for F_{r} vs. mass m and find the slope a of the straight line.

For each value of angular velocity ω calculate the percent difference between the theoretical value of the slope $\omega^{2} r$ and the observed value of the slope a.

$$
\begin{aligned}
& \omega=30.0 \mathrm{rad} / \mathrm{s} \quad \omega^{2} r=\ldots \quad \text { (} \quad \text { slope } a=\ldots \text { () } \\
& \frac{\omega^{2} r-a}{\omega^{2} r} \times 100 \%= \\
& \text { (\%) } \\
& \begin{array}{c}
\omega=40.0 \mathrm{rad} / \mathrm{s} \quad \omega^{2} r= \\
\frac{\omega^{2} r-a}{\omega^{2} r} \times 100 \%= \\
\end{array} \\
& \omega=50.0 \mathrm{rad} / \mathrm{s} \quad \omega^{2} r=\underline{\text { (}} \quad \text {) slope } a= \\
& \text { () }
\end{aligned}
$$

$$
\frac{\omega^{2} r-a}{\omega^{2} r} \times 100 \%=
$$

\qquad (\%)

Quit the program. Do not save any changes. Logout from your account.

Return the completed lab report to your lab TA.

